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Abstract We consider a cyclic-service queueing system (polling system) with time-limited .

service, in which the length of a service period for each queue is controlled by a timer, i.e., the
server serves customers until the timer expires or the queue becomes empty, whichever occurs
first, and then proceeds to the next queue. The customer whose service is interrupted due to
the timer expiration is attended according to the non-preemptive service discipline. For the
cyclic-service system with structured batch Poisson arrivals (M /G//1) and an exponential
timer, we derive a psuedo-conservation law and an exact mean waiting time formula for the
symmetric system. Furthermore we provide a general psuedo-conservation law for exponential
time-limited service and some basic services.

Keywords: Polling system, structured batch Poisson arrival, exponential time-limited service,
non-preemptive discipline, psuedo-conservation law.

1 Introduction

In cyclic-service queueing systems (polling systems) with non-zero switch-over times,
Watson (1984) and Ferguson and Aminetzah (1985) have first found the well-known pseudo-
conservation law given by a weighted sum of mean waiting times. Using the stochastic de-
composition of the workload in vacation systems, pseudo-conservation laws have systemati-
cally been derived by Boxma and Groenendijk (1987) for basic service disciplines, such as
exhaustive, gated, one-limited (non-exhaustive) and one-decrementing (semi-exhaustive) ser-
vices. After them, these pseudo-conservation laws have been extended to various service disci-
plines and a compound Poisson process with correlated arrivals as reviewed in survey articles
by Takagi (1997). These pseudo-conservation laws can be used to obtain simple and yet ac-
curate approximations for the individual mean waiting times in asymmetric systems and also
useful for optimization problems in flexible service disciplines with controllable parameters,
e.g., Boxma, Levy and Weststrate (1990) and Katayama, Kobayashi and Nakagawa (2003).

On the other hand, time-limited service polling systems have gained much attention in
view of both the applications and the theoretical analysis. The term time-limited service refers
to the fact that the server serves a queue only up to an amount of time controlled by a timer dur-
ing each service period, that is, the server serves waiting customers (messages or packets) until
the timer expires or the queueing buffer becomes empty, whichever occurs first, and then pro-
ceeds to the next queue. The limited time is also called the maximum server attendance (MSA)
time by Leung and Eisenberg (1990). The time-limited service disciplines are classified as
exhaustive (or non-gated) and gated time-limited services and furthermore, as non-preemptive
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and preemptive-resume service disciplines with respect to the interrupted service caused by
timer expiration as in Katayama (2001). The main merit of the time-limited service is that the
MSA time can be arbitrarily adjusted. Such a flexible schedule is effective for the performance
optimization, and has a potential applicability to communication systems with multiple grades
of service requirements in multi-media broad-band networks.

In this paper, we will derive a pseudo-conservation law for an /\/[X/ (/1 +ype cyclic-service

- system with an exponential time-limited service, which is an extended result of Katayama,

Kobayashi and Miura (2001) and will provide a general pseudo-conservation law for mixed
basic service disciplines, which is also an extension of the recent result of Katayama and
Kobayashi (2002). The rest of the paper is organized as follows: In Section 2, we describe
the model and notation. After pleliminaries in Section 3, we derive a pseudo-conservation law,
and give an explicit mean waiting time formula in Section 4. We provide a general pseudo-
conservation law for the cyclic-service system with time-limited service and some basic service
disciplines in Section 5. ‘

2 Model and Notation

We consider an M X /G/1 cyclic-service queueing system with N infinite capacity buffers
which are denoted by Q1, Qs, - - -, @n and assume that the system has a Poisson arrivals pro-
cess at rate \ such that each arrival contains G; customers in Q;,4 = 1,2, ---, NV, simultane-
ously. The generating functions (GFs) of the joint probability distribution, g (ky, ko, - k) o=
Pr{G) =ki,Go = ko, -+ ,GN = kn}, ki >0, i=1,2,---, N and the marginal distribution
are denoted by, respectively, :

Gz, 20, o) = E[25, 252, -+ 23N = G(2),
Gi(x) =Glzy =1, zi=x,-,2y = 1),
Some moments of the joint distribution for {G}} are denoted by

[0G(2) _ , - 0?G(2) B . s
gi = |: ()Z»L :|le - EK”&]? Big = {()27()21 1 - E[(’"LC’J} for s 75 J:

9207 ~

o = Fﬁﬁ} — B[Gi(Gs — 1)),
0z | 1

where the z = 1 stands for (zy = 1,---,2 = 1,---,zy = 1). The maximum length of a
service period of a single server at ¢, = 1,2,---, N is limited by a given time 7; called
the MSA time, in other words, the server serves the customers in ¢J; until either the time
limit expires, or the queue becomes empty, whichever occurs first, and then proceeds to (i1
mod (IV), where customers arriving at currently in service can possibly be served in the same
service period, i.e., exhaustive service discipline. Furthermore, the service on the customer be-
ing served is completed during the current service period, i.e., non-preemptive discipline. We
assume that the MSA time 7T} for Q;,i = 1,2,---, N is exponentially distributed with mean
T; =1 / ;. The Laplace-Stieltjes transform (LST) and the distribution function (DF) of the
MSA time T},i = 1,2,---, N are denoted by T;*(s) := /(s + ) and Ti(1), respectively.
The time-limited schedule can be parametrized by a vector of (T 1.,71—27 . ,T,\r). The LST of
the DFE, the mean and the second moment of the service time H;,+ = 1,2, -, N of a customer
at (); are denoted by H7(s), h; and h,,EZ), respectively. Each arrival is also considered as a
supercustomer whose service time (B) has the LST B*(s) of the DF, the mean and the second
moment given by, respectively,

B*(s) := GH{ (s). Hi(s), - H}(5)),
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N
b= Zgih,i,
=1
N . . N i—1
B2 .= Z (gzhgz) + {]2(2)]712> + 22 h; Z f]i,jh';j-
i=1 : =2 j=1

The total load offered to the system is then given by
N

p=2=3 p
=1

pi = Aihs, Aii=Agy, i=1,2,--- N.

The LST of the DF, the mean and the second moment of the switch-over time D;, i =
1,2,---, N needed by the server to switch from ); to Qi1 are denoted by D7 (s), d; and
dgz), respectively. The switch-over times are independent of the arrival and service processes.
The mean and the variance of the total switch-over time during a cycle of the server are then
given by, respectively,

N : N

D= Zd,,;; 0% = Z ((].52) — d,z> .
We refer to an inls_tilnt the serve;_ai’rives at ¢; from Q;—y as a polling instant of ();. Further-
more, we define the polling cycle time (C') as the time between the server’s visit to the same
queue in successive cycles, the service period (S;) of (; as the time between the arrival of the
server at (); and his subsequent departure from ();, and the intervisit time (I;) for (; as the
time between the server’s departure from (); and the next polling instant of ;.

Remark 2.1. We do not consider a batch that contains no customers at all, i.e. g(0,0,---,0) =
0. Some special cases are as follows; If each arrival contains only customers for a single queue,
we have g; ; = 0 fori # j, N > i,j > 1. Furthermore, if each arrival contains a single cus-
tomer, we have g; = 1 and gz@) = (0 for N >4 > 1. If the number of customers contained in
each arrival are independent for different queues, we have 9i; = gigj fori # j,N > 4,5 > 1,
see Sidi and Segall (1983).

3 Preliminaries

The non-preemptive, time-limited schedule is closely related to the Bernoulli schedule
with parameters (p1, p2, ---, py). From correspondence of the time-limited service to the
Bernoulli schedule, we have the following results:

| pi =Pr{1; > H} = H (o), Py:=1— H (o). (H
We define the following LSTs and GFs fori = 1,2, ---, N:
' Hi(s + )

HY (o)
H'(s) — Hf (s + )

1 — H} (o)

QF; () == Ff (A = MGy(x)), WF,(x) := FI (A = AGy(x)),
Qp(@) :==piFP (A = AGu(@)),  Q7.(2) = BFs (A — AGila)),
Qu,(x) == Hf (A= \Gy(x)).
Further, we define the following random variables fori = 1,2,---, N:
K; = the number of customers at the polling instant at ),

Ff(s) == Ele T, > H,) =

Fi(s) = Ble*™|L < Hi = .




KATAYAMA ° A General Pseudo-Conservation Law for a Polling System with Time-Limited Service Discipline

N; := the number of customers served during S,
L; := the number of remaining customers in ¢); when the server leaves Qi-
Then, we have

E(L;) = E(K;) — (L — pi) E(N), 3)
which can be derivéd from the following known equations:

E(K;) + ME(S:) = E(N;) + E(Ls), E(S;) = E(N;),
E(S;) = pE(C), E(L)=(1-p)E(C), E(C) ) =D/(1L —p). “)

In the next section, we will use Lemma 1 on the following GFs defined by: For m > 0,

Pi(x) := GF of the DF {p;(m)} of the numbers (m) of customers in ¢;
at an arbitrary epoch,

P (x) := GF of the DF {p; (m)} of the numbers of customers in ¢J;
just before an arrival epoch,

II;(z) := GF of the DF {m;(m)} of the numbers of customers in (;
just after a departure epoch of a customer from the system.

II7 (x) := GF of the DF {m; (m)} of the numbers of customers in ();
just before a departure epoch of a customer from the system.

Lemma 1.
IL(x) = Pi(x)Ri(x), Ri(n) := Lﬁm | 5
A gi(L —ua)

Proof: Let a set Sy, := {m +1,m +2,---} and S% := {0, 1,--,m} for m > 0 with respect
to the numbers of customers in ;. Then using the exit rate (7.¢) from the set Sy, and the
entry rate (r;,) into Sy, that is, from the discrete-state level-crossing analysis regarding the
state {m + 1}, we get

Tout = )\(lownﬂ'; (77'L + 1) = )\giwi(777’)7

m T m—3
Tin o= Aup O _ Dy () Z Pr{G; =k} =D _ pi(j [J — Z Pr{C,; =k} } .,
=0

k=r—j+1 7=0

where Aggun (Ap) 18 the long run rate of downward (upward) jumps, e.g. see Shanthikumar
(1982), and we have used the PASTA (Poisson arrivals see time averages) property for the
second equation with \,,. Equating the exit and entry rates, we obtain

. m m—j
gimi(m) = Zp?;(;j) 1 - Z Pr{G;, =k} . (6)
7=0 k=0 :
Finally, taking the generating function of (6) we get (5). O

The GF R;(z) represents the GF for the backward recurrence time in the discrete-time
renewal process, where the interval between two successive renewal points is given by (.
A probabilistic interpretation for (5) is given as follows: First of all, we assume the FIFO
discipline for Q;. Then, P;(z)R;(x) represents the GF for the number of all customers placed
before an arbitrary tagged customer chosen randomly from an arriving batch in ¢); when the
tagged customer has arrived at (; because of the PASTA property, while I1;(x:) the GF for the
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number of customers being behind the tagged customer in (); just after the tagged customer’s
departure epoch. The both GFs should be equal in steady state. Here, note that (5) holds
for any service mechanism with non-batch and non-preemptive services, since the number of
customers in ¢); is independent of service disciplines as FIFO, LIFO, etc. Eq. (5) for the time-
limited service polling system is a generalized result for the M X /(1/1 single-queue (Chaudhry
(1)79)) and also follows from the result derived by Takine and Takahashi (1998) as a special
case of a batch Markovian arrival process (BMAP).

4  Queueing Analysis

We will derive Theorem 1 for the time-limited service system using the GFs formulated
on both service-beginning and customer-departure epochs. In what follows, an epoch is a
polling instant, a service completion or a service beginning for a customer in ;. We consider
a sequence of pairs of random variables (L,,, J,,),n = 1,2, - - - defined as follows: L,, denotes
the number of customers at the n-th epoch, while J,, = 0 if the epoch marks a polling instant
of Qi, Jn, = 1 if the epoch marks a service completion of a customer in @; and .J,, = 2 if the
epoch marks a service beginning for each customer.

Theorem 1 (Pseudo-conservation law).
For a stable M /(i/1 cyclic-service system with an exponential time-limited service specified
by a vector (T'1, T, - - -, T n), the following relationship among the mean waiting times holds:
N - N

AiD ; , A (@) (22

i=]

Zm =

N i—1 N ' '
+—Z/77Zg“h ‘>D D T l/) Z/) } (7)

Z——_.

D X d :
+———— th {2/)1(}7 + )/\1,/1] » H (oy) ‘l'ﬂf)

2(1 — (1 - H,f(af,;))} .

Proof: First of all, we define the following GFs:
®;(x) := lim E[z"|J, = 0],

1—00

I;(z) = lim Elx'|,
I () == lim E[xb)J, = 2., (= Z 7r,;"(l‘;);rk);

1—+00
1—0C
k=1

n

where 1T (0) = 0. Then we obtain a functional relationship between [1; () and [T+ (),

I (2) = I (@) [Q,f‘i(él’) + in(l’-’)} % =11 (2)Qum, (x) IL )
and a functional relationship with IT; (),
I (2) = 5 [@(ar) — 5(0)] + T (2)Qp, (= )l — i (D@, (( )i ' @)

where

= lim Pr{J, =0}/ Pr{J, =2} = (1 - p)/\D. (10
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Note here that 1/« is nothing but the mean number of customers served in one service-period
at Q;, i.e. 1/k = E(N;). Combining (8), (9) and Lemma 1, we obtain finally

(1= $)Qu,() NP D J} |

_ 11
D 1l—p (th

(2= Qp(x)Ri(2)Py(x) = [4571(;1*) +
Therefore, tdkmg the first derivative of both sides of (11) w1lh respcut to - and applying Little’s
formula to P; (1) lead to

Bi(1) =

Ai ] ' , s ) Y o
5 L+ A T H; (¢ 1)—(—(1—}[5((341)){2(}[ + N E(W; )H (12)

Furthermore, it follows from the decomposition theorem for vacation systems that

N 2 N 2 .o =
/\b(“) [)7‘71,. POD
i ‘/V _ 2 B
Z/) ~(1—/)) = 20 + 2D + _ p Z/)
N
+> hB(Li), . (13)
i=1

E(L;) = ®,(1) -

Y

1—p

where we have used (3)-(4) and E(K;) = (I)é(l) for derivation of (14), see Boxma (1989) and
Katayama et al. (2001). Hence, arranging (12), (13) and (14), we reach (7). a

We also give an explicit mean waiting time formula for the symmetric polling system:

: 5gh(2 4 g 2p2 21,
E(W) = 1 {/)97 +g'“'h +(N41)g h
2 {1 —p—MgD{l - oz)}] gh g
(2)
+(1 - /)) S +D {l + Agh + d)\g{mH () + p (1—1 ((v))H , (13)

where g = gi, 9@ = g7, g® i=gig, 0 i =12 N (i #£5).

Remark 4.1. The relationship (7) reduces to Eq.(9) in Theorem 1 in Katayama et al. [9] setting
= l,gz(-z) = g;; = 0and \; = Ag;. Similarly, the formula (15) to Eq. (18) in Theorem 2
in [9] setting g = 1,9(2) = gm = 0 and p = Np. A necessary and sufficient condition for
stability of the time-limited sercice polling system is given by:
N
p<1and A\ [pzh,+p1(h +D)] + X py <1 forall i, (16)

=1
(771

where the term in the brackets in (16) represents the average time of a modified service time
H := piH; + P;(Hi + 32X, D;). The similar relationship to (7) has not been obtained even

for the M /G /1 polling system with gated time-linvited service, see Remark 4.1 in [9].

5 A General Pseudo-Conservation Law

Combining Theorem 1 and previous results on the four basic service disciplines derived
by Boxma (1989) and Chiarawongse and Srinivasan (1991) and on the Bernoulli service also
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by Boxma (1989), we provide the following general formula concerning with batch Pois-
son arrivals. Let Fa, Ga, Lt, De, Be and Te denote the index sets of exhaustive service,
gated service, one-limited (non-exhaustive) service, one-decrementing (semi-exhaustive) ser-
vice, Bernoulli service and exponential time-limited service queues, respectively.

Theorem?2 (General pseudo-conservation law). .

For a stable M- /G/1 polling system with mixed service of [a, Gla, Lt, De, Be and T'e ser-
vice disciplines. a pseudo-conservation law is given by:

D AD(1 = ps 3
Z piE(W;) + Z/), [L — —} (W) + Z i { — —(——A} E(W)

ieBr Ca iELt ieDe L= P
D _ N D )
+ Z/)L { _/ J E(W;) + Z/), {l - —/(J — H] (o ))} E(W;)
i€Be i€T¢
A N N i—1
= mZ(ﬁgih + 9982 21712JL i+ ‘,—_— (17)
- - i:l . ._l

Soo2pt Y A h

e {/} Z/)
2(1—/) /)) icEx.Ga i€Lt

+ YA 1= 2pi)g h; - (Agi)“.qdv,ihf;g)] + Y ADihi(2pg; +9¢7)

i€De 1€Be
d N :
+ Z Ai[2pigi + 2 )/\7J71——[‘I (cv) —I—JL ( — H ()]
i€Te Y
Remark 5.1.

(1) In an M~ /G/1 cyclic-service system, the following necessary and sufficient conditions
for system stability are known for the individual service disciplines: p < 1 for the exhaustive
and gated services, p < 1 and \; < (1 — p)/D for all 4, for the one-limited service, which
is equivalent to A, E(C') < /(1 — p;), where the term, 1/(1 — p;), represents the expected
number of customers served during a 1-busy period at ¢);, see Takagi (1990) and Altman et. al.
(1992).

(2) It can be seen from (17) that the 1ndex set 1'e is equivalent to the Be if and only if the ith
Bernoulli parameter p; = e~ and H}(s) = e~
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