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New Three-Dimension Problems in Queueing System Analysis
Tsuyoshi Katayama

Abstract

This monograph discusses a new type of three-class priority queues with controllable parameters
(k1, k2, ks > 1), which operates as follows; a single server continues serving messages in queue n
until the number of messages (customers) decreases to &, less than that found upon the server’s last
arrival at queue n,n = 1,2, 3. In succession, messages of the highest class present in the system,
if any, will be served according to this k,-decreasing service. Laplace-Stieltjes transform (LST) for
the waiting time distribution of each class messages are explicitly obtained by using the generating
function (GF) method for M, Ms, M3/G1,G2,G3/1 priority queueing system with the multiple
vacation (MV) rule. The generalization of dimension-number and the decomposition law (property)
are also considered for the special cases.
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1 Introduction

Classical paper for priority queues may be known by H. Kesten and J. Th. Runnenbeurg (1957)
in [1]. There have been some analytical studies of priority queueing models with controllable pa-
rameters. A flexible queueing model with a general decreasing service priority scheme is proposed
by Katayama (1992). The priority descipline is defined by a vector (k1, k2, - - - , kn) in [7], where
1 <k, <oo,n=1,2,---,N and operates as follows: For the moment, suppose that class-n
messages are served. A single server continues serving messages in queue n until either queue n
becomes empty, or the number of messages decreases to k,, less than that found upon the server’s
last arrival at queue n, whichever occurs first. This service discipline for messages in queue n is
called a general (decrementing) decreasing service, the k,,-decreasing service or the k,-busy period
service. If there are messages in the system at the completion epoch of the k,-decreasing service
for the class-n messages, messages of the highest class present in the system, say class ¢, will be
served next according to the k;-decreasing service. If there is no message in the system, the server
goes away for a vacation. The vacation may be repeated if the server finds the system still empty
at the end of a vacation. If any, the server starts serving messages of the highest class present in
the system according to the k,, decreasing service. This is called the multiple vacation (MV) rule.
Takagi [3] derived the mean message waiting time formula in a symmetric cyclic-service polling

system with (k;y = ko = --- = ky = 1). By using the boundary value method, Cohen [5] an-
alyzed a semi-exhaustive alternating service queueing model (N = 2) with (k; = ko = 1). If
ki1 = kg = -+ = k, = o0, then the priority discipline reduces to the exhaustive service priority

discipline. In the case of (k] = ko = 00), it also reduces to the alternating priority discipline.

Famous historical two-dimension (/N = 2) problem in queueing analysis may be the shortest
queue problem, for which Fayolle and Iasnogorodski [2] have analyzed by using the boundary value
technique for the first time (1979). The shortest queue problem is one of the lane selection problems.
With using the boundary value technique, similar two-queue models (N = 2) have been analyzed
by some researchers, e.g. Cohen analyzed two queue, one-server model with priority for the longer
queue, which is considered as a dual queueing system against the shortest queue model. (In Cohen’s
paper [6], the following is cited: Dr. T. Katayama has formulated the priority model with the longer
queue and brought it to the author’s attention during his visit in October/November 1984 to the NTT
Electr. Communi. Lab.’s Musashino, Tokyo 180). However, the three-dimension (N = 3) problem
of the shortest queue has still been an open problem. Coffman, Fayolle and Mitrani [4] analyzed
a flexible alternating service discipline with time-limited service (711,7%) by using the boundary
value method, where T},, n = 1, 2 are called the maximum attendance time (MAT). Such a flexible
priority discipline with controllable parameters is effective for the performance optimization and
has a potential applicability to message processing with multi-class tasks and routing schems in
communication systems.

In this monograph, we consider priority queues with the MV rule and controllable parameters
(k1, ko, - - ,kN), called k,-decreasing service, which is one of the flexible service disciplines. De-
spite the effectiveness of flexible service disciplines, few analytical results in the literature have been
obtained for flexible priority systems with multiple (N > 3) message classes. This may be due to
the difficulty and the complexity of queueing system analysis.

In the following, a single server services class-n messges at the service counter S,,. Class-n
messages with arrival rate A, arrive to the infinite capacity queue (),,. The Laplace-Stieltjes trans-
form (LST) of the distribution function (DF), the mean, and the m-th moment of the service time
H,, for each message of class-n are denoted by H(s), h,, and i (m = 2,3,---), respectively.
Similarly, the LST of the DF, the mean, and the m-th moment of the vacation time V are denoted
by V*(s),v and (™ (m = 2,3, --), respectively. The switch-over time needed to switch service
from one class to another is assumed to be zero. Messages within a class are served in each queue
on the first-in-first-out (FIFO) discipline. The server utilization for class-n messages is denoted by
Pn = Aphp, where )\, is Poisson arrival rate of class-n messages. The total server utilization is
denoted by p := 27]:[:1 pn < 1, which guarantees the system stability.
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2 Two-class Priority Queues (N = 2)

In this section, the results of Katayama [7] for a system with two-class priority queues with
(k1, ko > 1) are summarized. Foremost, note that (k1, ko > 1) is equivalent to (k1 = oo,k > 1),
since class-1 messages have priority over class-2 messages. We introduce some notations. The
queueing system consists of two-parallel queues )1 and ()2 for messages of class-1 and class-2,
respectively. Messages in ()1 and ()5 are served by a single server in accordance with the priority
discipline (k1 = oo, ks > 1). After switching over to Sp, the server serves all messages in ()1
until it becomes empty, i.e. k; = oo. Just after service completion at Sp, the server switches
over to So and continues serving messages in ()2 until either it becomes empty, or the number of
messages decreases to ko less than that found upon its arrival at So, whichever occurs first, i.e. the
ko-decreasing service.

We use the following notation:

Tn = An /A, n=1,2 A= A1+ Ao,
Pn = Anhp, n=1,2, p = p1+ p2, (1a)
h:=r1h1 4+ ra2ha, h? = T1h§2) + T‘th),
and
Qn(x )':H*{/\ (1-=z)}, n=12
Qu(@,y) =V {M(l —z)+ X(l —y)} = V(z,y). (1b)

From the busy-period analyis on the standard M//G/1 queue, we then have LST ©} (s) for class-n
messages:

On(s) = Hp{s + An(1 - 65(s5))}, n=1.2,

B(©,) = ™ E(02) = v 1
(n)_l—pn’ (n)_mv (lc)

Gi(y) == 01{x(l -y},

Ga(z) == O3{\1(1 —2)}, (1d)

Gn(z;m) == {Gp(2)}™, m=1,2,3,--

For simplicity, we also define as, Q3(;mod2) = @1, A3 := M1 h(Z) = h?), p3 = p1.

2.1 Queue-Length GF (Generating Function) at Service-Completion Epochs

Firstly, we introduce:

¢n(i,7): the steady-state probability that i messages are waiting in @); and j messages are
waiting in ()9 just after service-completion epochs at S,,,n = 1,2, 4,5 =0,1,2,---,
that is, when the server has completed the exhaustive service at S1(k; = oo) or the
k2(> 1)-decreasing service at Sy and

O (z,y) =220 g Oulisf)a’y! 2] <1, [yl <1, n=12.
We have the following functional relations, where (0, y) := Zi:@n(o, Y), ¢o = ©(0,0) :
01(0,9) = ¢o{V(G1(y),y) = V(0,9)} + P2(G1(y), y) — ©2(0,y), (2a)
ko—1 : k
z) Go(z)r2
Ba(,y) = {2(0,) — (0,0)} +Z¢03 { ey ol }

k2 1 ) 7)k2
+¢o{v<o,y>—v<o,o>}G +¢OZ (0, )y { A } (2b)
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Note that V' (0,0) = 0, because of multiple vacation rule. Eliminating ®2{G(y),y} from (2a) and
(2b) after setting x = G1(y) in (2b), we get

ke Rl , j ko
A (y)®(0,y) + ¢0Gz§;;1) _ Z (0, §)y’ {ngfjﬁ B Gg(ycljzl) }
j=1

ko—1 ko
— 60V (G1,y) — doM (H)V (0, y) +¢OZ 0.9)y {szl) ngf,fj) } (3a)

where A1(y) := 1 — Go{G1(y)}*2/y*2 and G; = G1(y). This is our basic functional equation
with unknown function ®(0, y) and unknown probabilities ¢(0,j),j = 1,2, -+ , ko — 1 and ¢ for
deriving of W7(s) and Wi () later, which is equivalent to the following functional equation, where

Ao(y) ==y — Go{Gi(y) ™

ko—1
Ao =3 000.) {yGa(Gr) — 7 Ga(Gr) )
]:1
=po{V(G1,y)y" — G2(G1)* — Ao(»)V(0,9)} (3b)
ko—1

+o0 Y v(0,5) {yk2G2(G1)j - ijz(G1>k2} :
=1

We know that Ag(y) = 0 has the zeros, y = w,, r = 1,2,--- ko — 1, see Lemma 2.1. Using the
zeros, we obtain the following simultaneous linear equation for {¢(0, j)}, for which the existence
and the uniqueness are guaranteed by p < 1:

Z = goao(w), r=1,2,- ky—1, )
o (wr) = {yﬂG2<G1>’” —GGY ] (4a)
ao(wy) = {V(G1,y)* — G2(G1)*} =0,

k‘z—l
£ 20 00 {yGa(GY —yGa@Y) (4b)
=1 o

Here, note that o (w,) and ag(w,) are known functions.
Lemma 2.1. Let us consider a function for y,
A(y) = y*2 — H* {Xo(1 —y)}, where H*(s) := O3[\ {1 — ©%(s)}]*2. (5)

Applying Takacs lemma [14] to A(y) = 0, we obtain the following results: If p < 1, then the
trancendental equation has exactly ks roots w,, 7 = 1,2, - , ko — 1 in the unit circle |y| < 1, while
wg, = L,and wy, 7 =1,2,--- , kg — 1 are explicitly expressed by

>0 (=) t0h @it J/k2
Z_: J! At {H } 42)
2
0, :—exp{ Z”}, =, r=1,2, e kg — 1. (5b)
2
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Lemma 2.2. We have determined unknown probabilities as follows:

, D;
¢(O7j):¢0Aja AJ = |_D]||7 :17275k2_]—7 (6)
where | D; | and | D | are the determinants formed by coefficients of Eq.(4) and Ag := 1. O

Lemma 2.3.

(i) @(0,y) is explicitly given as follows, with the unknown probability ¢y,

ko—1
20.0) =02) = 705 S A Ga(GY y/a() )
j=1
’ Af(oy) {V(GLyy™ = G2(G1)*™ = Ao(y)V(0,9)} (7)
¢ ko—1 ‘ |
v ; 0(0.) {yGa(Gr) -y Ga(Gr)

(1)2(1'72/) ::d)OFQ(-’IJ, y)v

Fy(z,y) :={®(y) — 1}

ko—1 . k
Ga(z)™ : {G2($)J Ga(z)™ }
+ A J _ _
yke ; iy yI yke

ka—1

Go(x)*2 i [Ga(x)  Go(z)k2
+V(0,y) 2y(k2) +;U(O,J)yj{ 2y(j) - 2y(k2) } (8a)
x)k2
Fa(o.9) =(8(0) ~ 1+ V(0,)} )
= [ Ga(w)y Gola)
+;{Ag+v(o,y)}y{ i } (8b)
y*
O(y) =1 =V (0,9) + o)
ko—1 4
ST, 40,y [ C2@  Gal@)® .
x |V(Gry) -1+ ;{Aﬂr (OJ)}?JJ{ ” e } , B89

where ®(y) := ®(0,y)/¢o, and Fa(z,y) := Pao(x,y)/do. We know that $(0,y) can be expressed
by the form ¢y ®(y).

(i) Po(z,y) is given by Eq. (8b) and ¢oFr(x,y), where ¢ should be determined from that
®1(0,1) 4+ Po(1,1) = 1. (However, C), X ¢ shall be determined by using the normalizing constant
to be I1,,(1) = 1 later on). O

2.2 Queue-Length GF at Message Departure Epochs

In this subsection, we analyze the queue-length ditribution at departure epochs of messages from
each service counter. Let,

7, (1): the steady-state probability that ¢ messages are waiting in (), just after a class-n message
has completed service at the service counter S,,,n =1,2,¢=0,1,2,---, and

I, (") = I, (2) := D2 g mali)a’, |z] < 1,n =1,2.

We first define a conditional probability and its generating function:
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qn(i;m) : the probability that ¢ messages are waiting in @), just after a class-n message has
completed service during an m (> 1)-busy period at S,,,n = 1,2, and

Qn(zym) =320 qn(i;m)a’.
Lemma 2.4. We obtain an elementary relationship between @, (x; m) and @Q,,(x) such that
Qn(z)(z™ —1)

T —Qu(z)

which follows from the following balance equation for {¢, (;m)}:

Qn(z;m) = n=12 (9a)

i+1
gn(ism) = qu(i —m+ 1)+ qu(j;m)gn(i — j + 1). (9b)
j=1
The first term on the right-hand side of Eq. (9b) corresponds to {¢,,(j = m;m) = 1} x ¢, (i—m+1)
in the second term. Note that the first term ¢, (m;m) = 1 can be not included in the second term,
because of ¢,(m;m) < 1 in general. That is, we need the first term. Further, from this balance
equation we obtain

Qu(z;m) = 2™ Qu(x) +{Qn(x:m) — Qn(0;m)}Qn(2) /. %)

The first term on the right-hand side follows from Y50, g {i — (m — 1)}a? = 2™~ 13" g, (i) 2!
Note that a steady busy period process exists under p < 1, ¢, (0;m) = 1 and ¢,,(¢ > 1;m) =0 ata
stopping epoch of an m-busy period process, that is, Q,,(0;m) = 1. O

2.3 The Case of (k; = 00, ky > 1)

(i) Derivation of 11, ()

First of all, we need the GF P (z) of the queue-length distribution {p1(i), i > 1} at service-
beginning epochs at S; for the derivation of II; (x). That is, Pi(z) := > 2, p1(i)z* = Pi(z,1),
Pi(z,y) := do{V(z,9) = V(0,9)} + 322_ {®n(x,y) — ®n(0,y)}. Note that we need three minus
terms, V' (0,y) and ®,,(0,y), n = 1,2, because of {p; (i), > 1}.

o
I (x) = C4 Zpl(i)Ql(x; i), where C is the normalizing constant to be 11 (1) = 1.

i=1
I (2) =C1Qu(a3) |0 30D (0(3.9) — 000,70} + 30 3 {ali. ) — 20,7}
i=1 j=0 i=1 5=0
f_l%(())w {(V(2,1) = V(0,1)} — do{V(1,1) - V/(0,1)}

+ ®o(x, 1) — P2(0,1) — {P2(1,1) — P2(0,1)}]

— B [0V (1) = 1) + @afa, 1) — @a(1,1)
I (2) :%{V(x, 1) =1+ By, 1) — B(1,1)}, (10)

where ¢o Fa(x,y) = ®2(z, y). Note that 1 (0,y) + 2(0,y) = P2(0,y) because of {p;(i),i > 1}.
The normalizing constant C; X ¢ can be determined from II; (1) = 1 using L’Hospital’s rule.

(ii) Derivation of 115 (y)
We need the queue-length distribution at service-beginning epochs at S2,{p2(j),7 > 1} for the
derivation of IIs(y).

Zm = P>(0,), (11a)
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where P (0,y) := ¢o{V(0,y) — V(0,0)} + {®(0,y) — ¢(0,0)}.

ko—1 ko—1
= pa(f)Qaly; ) + { /Y= pali)y /y’“"’} Qa(y; k2)
=1

7=1

ko—1 ko—1
=¢o Y v(0,7)Qa(y; ) + ¢o {V(o,w/y’“z - v(&j)yﬂ'/y’”} Qa2(y; k2)

j=1 j=1
ko—1 ko—1
+ ) 8(0,5)Qa(y; §) + {( (0,9) — 60)/y** = D 6(0,5)y /y’”} 2(y; k)
j=1 Jj=1
— (1 k) 0(0,9) ~ o+ 0V (0.0))
ko—1
+ 2 [Z{A o0, )}y — 1=y ey — >}].
_CagoQa2(y) ok, y™
L= " wm ) G
ko—1
X | V(GLy) =1+ > (A5 +v(0, ) {y?Ga(Gr) — 1y Ga(G1)™}
j=1
CQ¢OQ2 bzl{A + 0 ) Jj=ka _q 11b
+ - Y- | 2 v(0,7)Hy' ™™ = 1) . (11b)

2.3.1 Waiting Time Analysis

We denote by W;¥(s) the LST of distribution function for the waiting time of class-n messages
Wy (t),n = 1, 2. By the usual argument, the number of class-n messages at a departure epoch from
Sy, is equal to the number of class-n messages that arrive at (J,, during its sojourn time because of
the FIFO service discipline. Therefore, we obtain

Wy(s) =11,(1 —s/A\p)/H(s), n=1,2. (12)
(i) Derivation of W (s)

From (10), we have

HI(CU) = il(_bggll((::))

where Fy(x,y) = ®a(z,y)/do, Fi(z):=V(z,1) =1+ Fy(z,1) — F3(1,1). Settingz = 1 —s/\;
leads to W7 (ss), (it is equivalent to (12)):

{V(Hf, 1) -1+ FQ(@', 1) - Fg(l, 1)},

O p)s  AO-s)
Wi = e

(13a)

(ii) Derivation of W5 (s)
From (11b), we have

s (y) =M<1 ) {@(y) — 14 V(0.9)}
ko—1
iz¢0322( S A+ v, - 1)

7j=1
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where Fy(y) := (1—y~*2){®(y)—1+V(0, y)}+2§2:711{Aj +v(0,5)Hy? %2 —1),and ®(0,y) =
¢o®(y). Similarly, setting y = 1 — s/ A2 leads to W5 (s), (it is equivalent to (12)):

(1 — pQ)S Fz(l — 8/)\2).

W5 (s) = s—X{l—H;(s)} —s/X\

(13b)

For the above our process to Wi (s), i.e. “®,(z,y) = Py(z,y) = I, (-) = W}i(s),n=1,2,"
we call <Top-Down Procedure> (TDP).
The above analyses of (13a) and (13b) are summarized as follows:

Theorem 2.1. For the case (k1 = 0o, k2 > 1), the LSTs W (s),n = 1, 2, are given by the top-down
procedure, where

2
n=1

P2<07y) :(bO{V(O?y) - V(Ov 0)} + {(I)(O,y) - (I)(()?O)}

(iii) Mean Waiting Time
Denoting by E(W, )k, n = 1,2 the mean waiting time for class-n messages in the case of
(k1 = o0, kg = K > 1), itis given by:

Corollary 2.1.

AP 1 F/(1) dm
E(W = 4 ——n F™M(y) =
(Wn)x 2(1—p,) A 2EF(1) w (@) dxm

Fn([B), n:1727 (14)

where we have used 1W*(0) = 1 and applied L Hospital s rule to (11b) because of F},(1) = 0. O.

For the semi-exhaustive service priority model of (k1 = 00, ks = K = 1), the mean waiting
time formulas are given by:

Corollary 2.2.
At Mohg? (1—p)v®
EFEW{) k=1 = —_ 15
W =50 =y T 2= o) (=P T 1o 20 (150
A ht? Agh$? 2
EWy)g=1 = + 15b
W= =50y =p "ot-p ' T O ma=p) Y
1 @
1— P1 %
O
2.4 The Case of (k; = ky = 00)
For this case, we have
®1(0,y) = do{V(G1(y),y) — V(0,9)} + ®2(G1(y),0) — ©2(0,0), (16)
‘1’2(% O) = (Z)O{V(O? GQ(:U)) - V(O> O)} + (I)l(o7 G2($)) - q)1(07 O)a (17)
D2(G1(y),0) = do{V (0, G2(G1(y))) } + ®1(0, G2(G1(y)) — 1(0,0). (16a)

Here, eliminating ®5(G1(y), 0) from (16) and (16a) after setting z = G1(y), we obtain

®1(0,y) =po{V(G1(y),y) — V(0,9)} + ¢o{V(0,G2(G1(v)))}
+ ©1{0, G2(G1(y))} — ©1(0,0) — @2(0,0). (16b)
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Further, using ®(0,y) := ®1(0,y) + ®2(0,0), (" the exhaustive service at S>), we obtain

®(0,y) — {0, G2(G1(y))}

= ¢o{V(G1(y),y) —V(0,y) + V(0,G2(G1(y))) — 1}. (16¢)
e(y) == 2(0,y),
o(y) — o{f(W)} = dog(v), (16d)

f(y) == G2(G1(y)),
9(y) =V (Gi(y),y) = V(0,y) + V(0,G2(G1(y))) — 1.

Using the iterative scheme (Kuczma et al. [15]), ¢(y) can be determined as follows. First, let us
introduce a sequence of {y;},

Yi+1 ‘= f(yl)u i:071727'” Yo ‘=Y, OSYJ S 17 (173)
9(wi) = g{yilyo =y}

Then, it follows from (16d) that

oY) — e(yit1) = dog(yi), 1=0,1,2,---.

Using this relation repeatedly, we have
oo
o) =n-+d0>_ glvilyo =y} (17b)
i=0

By the boundary condition, ¢(0) = ¢, the constant 1) can be determined as

n=¢o [1 > g{uilyo = 0}] :
i=0

Thus, we obtain

(0,y) == »(y) = {1l — G(0) + G(y)}, (18)
G(y) =>_ gfvilyo =y} (18a)
1=0

Similarly, we know that ®(z, 0) := ®o(x,0)+ ®1(0,0) and ®(0, y) lead to the top-down procedure,
which are summarized in Theorem 2.1. (This suggests us an important problem, see Remark 4.3).

Corollary 2.3. For the exhaustive service priority model of (k1 = 00,k = K = 00), the mean
waiting time formulas are given by:

E(W1) ks = )\1h(12) ,03)\1h§2) +(1- p1)2)\2h(22) (192)
2(L—p1)  2(1—p1)(1 = p2)(1 — p+2p1p2)
L pept (= p)(1=p) v
L—p+2p1p2 20’
B(Wa) g =21 (L= p" Ay + phahy” (19b)
2(1=p2)  2(1 = p1)(L = p2)(1 — p + 2p1p2)
1 —po v(2)

1—p+2p1pp 20
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2.5 The Case of (k; = 00, ky = 1)

For k2 = 1, we have the following equation:

I (z) = M{V(w, 1) — 1+ Fy(z,1) — Fy(1,1)}, (20a)
x—Q1(x)
where Fy(z,y) = ®o(x,y)/Po, Fi(x) :=V(x,1)—1+ Fo(x,1) — Fp(1,1).
_C29oQa(y) , y B
ty) =222 1 1) s s X V(G - 1
1-p Q) .\ V{Gi(y)y} -1
vy — Qa(y) -1 y—G2(Gi(y)) (00

Setting x = 1 — s/A; and y = 1 — s/Xg, II1(z) and I5(y), respectively, lead to the LST
Wr(s),n = 1,2 for the case of ky = 1:

Theorem 2.2.  For the semi-exhaustive service priority model, the LSTs W) (s),n = 1,2 are
given by:

(L—p1)s  Fi(l—s/A\)

Wilslk—1 = X A= ms) =i @1a)
. _1=p 1-65(s) s{1-XE(D2)} s(1— p2)
Wa(s)k=1 = Xv  SE(0y) s — X2+ XaDi(s) s — Ao+ AoHa(s) (21b)
where
05(s) :=V*(01), o1:=s+ A1 — A\0O](s), (21c)

D3(s) :=02{A\1 — \i©7(s)}-

For the right-hand side of Eq. (21b), some probabilistic meanings for W5 (s) k=1 can be given by
the decomposition (law) property in Theorem 4.2. a

3 Three-class Priority Queues (/N = 3)

This section presents three-class priority queues with general decreasing service of a parameter
(k1 = oo, ke > 1,k3 > 1). Each queue @,, with infinite buffer capacity has a service counter for
class-n messages S, n = 1,2,3. Messages in ()1, ()2 and ()3 are served by a single server, who
serves all messages in accordance to the following priority discipline; after switching over to .Sy, the
server serves all messages in (01 until it becomes empty, i.e. the exhaustive service (k1 = 00). Just
after service completion at .Sp, the server switches over to S> and continues serving messages in Q)2
until either it becomes empty, or the number of messages decreases to ks less than that found upon
its arrival at S5, whichever occurs first, i.e. the ks-decreasing service. Class-3 messages are served
next, if any is present, according to the ks3-decreasing service.

We introduce the following notation:

Tn::An/Aan:1a2737 )‘::>\1+>\2+>\3’
n

P = Anh, n=1,2,3, p = p1+ps+ ps, py=>_ni
=1

h :=r1h1 4+ rohs + r3h3, h(2) = Tlhgm + ’r’ghgz) + Tghé2)7
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and

Qn(z) = H{\(1—-2)}, n=1,23,

Qu(z,y,2) = V{1 —2)+ X1 —y)+ A3(1 — 2)} = V(x,y, 2),

Gi(y,2) = O1{a(1 —y) + A3(1 — 2)},  O71(s) = Hi{s + A (1 — O1(s))},
Ga(x,2) == O5{Ai(1 —2) + As(1 — 2)},  ©5(s) = Hy{s + Aa(1 — O3(s))},
Gs(z,y) == 03{ (1 —2) + X(l —y)}, O3(s) = Hz{s + A3(1 — O3(s))}.

The queue-length probability defined at message departure epochs, 7, (i), introduced in 2.2, is
also used in this section for n = 1, 2, 3. Its generating function is defined as follows.

oo
I, (-) = M (x) := > ma(i)a’, x| <1,n=1,2,3.

Also, let 7,(4, j, k) denote the probability that ¢, j, and k messages are waiting in queues Q1, Q2,
and ()3, respectively, at message departure epochs at .S,. Then,

(S SIENC OlNe 9]

M(r,y,2) = 5. S malisjik)aty 2%, Jal,lyl, |2 < Ln=1,2,3.

=0 7=0 k=0

Similarly, assume that p,, (i, 7, k) represents the probability that i, j, and k messages are waiting in
@1, Q2, and @3, respectively, at service beginning epochs at .S,,. Then,

oo oo o0

n(T,9,2) = Y palis g k)aty’ 2N, el fyl 2 < 1,n = 1,2,3.

=0 7=0 k=0

The queue length probability at service completion epochs, ¢, (i, 7), defined in Section 2 is also
used, but extended as ¢,,(i, j, k) for N = 3.

3.1 Queue-Length GF at Service-Completion Epochs (/V = 3)

First, let us define
(2,9, 2) 1= 3720 D720 Do Pn(is Eyalyi 2k x|, |yl 2] <1, n=1,2,3. (22)
O(z,y,2) = Zi:l b, (z,y,2), and ¢g := ©(0,0,0).

For ®,,(z,y, z),n = 1,2, 3, we obtain the following functional relationship:

@1(07%2’) :¢O{V(G1(y72)7yaz) - V(07yvz)}
+ q’z(Gl(% 2)7% Z) - q)2(07y7 Z) + (p?)(Gl(y? Z),% Z) - @3(07 Y, Z)' (223)

The term G1(y, z) is used for the exhaustive service at S;. The movement of a moving single
server (which corresponds to the control-point used in processor and communication systems) may
be V — Sy, 52 — S1 and S3 — S;. For the term ®(z, y, 2), the movement of a single server may
be as follows, i.e. S1 — S2,53 — Sy and V — So.

z, z)k2
Oy (z,y,2) ={P®(0,y, z) — ©(0,0, Z)}G2(y1;2)

+k§§:¢(o Jk)y' 2" {GQ(”T? 2 Golw, o)

J ko
j=1 k=0 Y y
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ko
+ ¢0{V(0,y,2) — V(0,0, Z)}G2(yx,;;) (22b)

t do ili 0.k [G2(:c 2 Galx, 2)k |

J ko
7=1 k=0 Yy Yy

where ®(0,y,z) := Zizl ®,,(0,y, z). Note that it can’t be allowed to move such as V' — Sy,
ie. V(0,0,z) AT Do(x,y, 2).

For ®3(x, y, z), the movement of a single server may be as follows, i.e. V' — S3, 51 — S5 and
SQ — 53.

ks—1 ks
Ba(,1.2) =60{V(0.0.2) ~ (0.0.0 EEDT 6 3 00,0, 124 DY
k=1
ks—1
+60 > (0,0, k)2 ’“W +{9(0,0,2) — o} (x y) (22¢)
k=1
k3 1 k3 1

ng(l’y ng(x y)
—qu(mk +Zq§00k) o

where ¢¢ := ¢(0,0,0), and V' (0,0,0) =0, (."the MV rule).

After setting x = G'1(y, z) for ®o(z, y, z) in Eq.(22b) and ®3(x, y, z) in Eq.(22¢), we sum three
equations (22a), (22b) and (22c¢) for eliminating ®2(G1,y, z) and ®3(G1,y, z) on the right-hand
side of Eq. (22a) (G = G1(y, 2)). The above equations are rearranged as follows:

®(0,y, 2) [1 G2{G1(y’ z}k] kiliwj, [G2(G1,) _Gz(G;,z)j]

k
yhz == yr2 y’
ks—1 k k
Go(Gy, 2)F G3(G1,y) v [G3(G1,y)™ G3(Gr,y)
+®(0,0, 2) [ o = ] Z $(0,0, k)2 { T
ka—1 oo ko
== oV (0,0, [ G ) 5 S o0, ot |G GO
) )
7=1 k=0
Gz(GhZ)k2 G3(G1,y)ks
- (bOV(O’O? Z) |: y’” - Zk3 (23)
ks—1 k k k
G3(G1,y)" G3(G1,y)™ G3(Gr1,y)"™
#0300, | GGG 4u(61,5.2) - 00 DY)
k=1

Finally, we obtain the basic functional equation with unknown functions, ®(0,y, z) and ®(0,0, 2)
and unknown probabilities, ¢(0, j, k) and ¢(0, 0, k), where j < ko and k < k3.
This is the starting-point of our queueing analysis, which consists of the following three steps:

Step 1: Using the basic functional equation, we need determine the unknown functions ®(0, y, z),
®(0,0, 2) and unknown probabilities ¢(0, j, k), ¢(0, 0, k).

Step 2: Using the determined ®(0, y, z) and ®(0, 0, z), we can express ®o(z, y, 2), ®3(z, y, z) and
®(0,y, 2).

Step 3: Using ®y(z,y, 2), P3(x,y, z) and ®(0,y, z), we can express P, (z,y,z),n = 1,2,3, by
which we can obtain P, (-), I, (-) and W;(s),n = 1,2, 3.

According to the above three steps, we proceed to the final goal, i.e. W (s),n = 1,2, 3. For
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Step 2, we obtain the following equations:

q)1(07y7 Z) :¢0{V(G1(y7 2)7% Z) - V(07 Y, Z)}
+ (EQ{Gl(y? Z)707 Z} - (I)Q(Ov 07 2,’) + ¢3{G1(y7 Z)ayv 0} - (1)3(07 Y, 0)7 (223)

where we have put z = G1(y, z) (. the exhaustive service for class-1 messages).

The other functions ®o(z,y, z) and ®3(z,y, 2) are given by Egs. (22b), (22c), respectively.
We know that ®,(z,y, z),n = 2,3 can be expressed by ®(0, y, z) and ®(0, 0, z) on the right-hand
side of Egs. (22b) and (22¢), which are determined from the basic functional equation. Note that
V(x,y,z) and G,,(-),n = 1,2, 3 are known functions. For the derivation of II,,(-),n = 1,2, 3, we
need the following P, (z,y,2),n =1,2,3:

For Step 3, we obtain the following equations:

3
Pl (.ZL', Y, 2) = ¢0{V($’ Y, Z) - V(Ov Y, Z)} + Z{(I)n(x7 Y, Z) - CDn(O? Y, Z)}7 (243)
n=2
3
P3(0,y,2) = ¢o{V(0,4,2) = V(0,0,2)} + > _{®u(0,y,2) — ®,(0,0,2)}, (24b)
n=1
3
P53(0,0, 2) := ¢p{V(0,0,2) — V(0,0,0)} + Z{‘I)n((), 0,z) — ®,(0,0,0)}. (24¢)
n=1

Therefore, we know that II,,(-),n = 1,2, 3 are also expressed by ®(0,y, z) and (0,0, z) using
P,(z,y,2), n = 1,2,3 and Lemma 2.4. That is, ®,,(z,y,2) = Pn(x,y,2) — P.(-) = I,(-) —
Wr(s),n=1,2,3.

3.2 The Caseof (k; = 00, ky = ks =1)

For ko, k3 = 1, Z;@:—ll(w) = Zi_ll(N) = 0in Eq. (23), so we have the following functional

equation:
q)(()? Y, Z)Z [y - GQ{GI (y7 Z)v Z}] + @(07 07 Z) [ZGQ(Gh Z) - yG3(G17 y)]
= - ¢0V(07 Y, Z)Z [y - GQ{GL Z}] + ¢0V(07 07 Z) [y - G3{G1 <y7 Z), y}] (25)
+ ¢oy {2V (G1,y,2) — G3(G1,y)} -

Using the zero y := (z) fory — Go{G1(y, 2), z} = 0, we get (0, 0, z) with the unknown proba-
bility ¢o:

(0,0, 2) [2G2(G1,2) — 0(2)G3(G1,0(2))]

=0V (0,0,2) [6(2) — Gs{G1(6(2), 2),6(2)}] + ¢0d(2) {2V (G1,6(2), 2) — G3(G1,6(2))},

where G1 = G1(0(2), 2).

~

®(0,0,2) := ¢®(0,0, 2) (26)
=poV (0,0, 2) [0(2) = G3{G1(3(2), 2),6(2)}] / [2G2(G1, 2) — 6(2)G3(G,6(2))]
+ 00d(2) {2V (G1,6(2),2) — G3(G1,0(2))} / [2G2(G1, z) — 6(2)Gs(G1,6(2))] .

Here, we denote by @(0, 0, 2) which has been determined, while ®(0, 0, z) is unknown and still
undetermined. Furthermore, using the ®(0, 0, z), we also obtain ®(0, y, z) with unknown probabil-

ity ¢o.
(/I\)(Ov Y, Z) tZ [y - GQ{Gl(yv Z), ZH + ‘/I;(Ov 07 Z) [ZG2(G17 Z) - yG3(G17 y)]
=— oV (0,y,2)z [y — G2{G1,2}] + ¢V (0,0, 2) [y — G3{G1(y, 2), y}] (27)
+ doy {2V (G1,y,2) — G3(G1,y)} — ¢ F'(0,0, 2) [2G2(Gr, 2) — yG3(G1,y)] -
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Meanwhile, ®,(x,y,2),n = 2,3 can be expressed by using @(O,y, z), 213(0,0,2) and Egs.
(22b), (22c¢).

Remark 3.1. For Eq. (22a), the other approach to EI;l((), y, z) is given as follows:

{‘I’Q(Z’,y, )+(I)3 z,Y,z }:C 0

-& p GQ(Ovz) . 5 G2(0az) . G3(0>y)
—5(0.5.5) 2 - 50,0, ){ : ‘ }
+ ¢V (0, y, z)GQ(;’ ?) + ¢V (0,0, 2) {Gg(i),y) — GQ(;’ Z)} - ¢0G3(S’y).

$1(07 y,Z) = (/I;(Oa Y, Z) - {q)Q(xvyv Z) + q)3(:r7y7 Z)}x:0~

3.2.1 Queue-Length GF at Message Departure Epochs

(i) Derivation of II; (z)
The GFs Pi(z,y,2), P>(0,y, z) and P5(0,0, z) used in the following (i) ~ (iii) are given by
(24a), (24b) and (24c), respectively.

Pi(x) := Zpl (i)z' == Py(x,1,1)
1=1

3
=¢o{V(x,1,1) = V(0,1,1)} + Z{(I)n(m, 1,1) — ®,(0,1,1)}, (28a)

z) =C1 Y p1()Qa(w;4)

=1

CiQi(z) B C1Q1(z) o)
x—Ql z;pl (@ = 1) a:—Ql(x){Pl( )= 1h

Hl( ) =1= Clpl,x(l)/(l - p1)7 Cl = (1 - pl)/P{,x(l)a

(A =p)@Qi(z) {Pi(x) — 1} / |4
T (z) = P NE) ZRORE P (1) := [dxp1($)] L (28b)
(ii) Derivation of I15(y)
ZPQ = P2 0 » Ys )a (293)

ko—1 ko—1
o(y) =Cy Y | p2(j)@2(y: 4) + Co {PQ )/y** — Z pa(J J/ykz} Q2(y; k2)

j=1
ka1
=Cy > pa(){Q2(y:5) — ¥ /Y™ Qa(yi k2)} + CaPa(y) /v Qa(y; ko)
j=1
_ O@Qa(y) ko Q2(y) ke
Y= Q2(y) jz: v 1}+02P2(y)y—622(y)(1 v
thay) = CaPay) S0y~ ha= 1), %)
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(iii) Derivation of II3(z)

Zpg P3(0,0, 2), (30a)

k31 k.}l

=C} Zm )Qs(z; k) +03{ 2)/2" - Zps k/Zkg}Qs(Z ks),

Qa(Z)(Z - 1)/2‘

Hg(z) :Cg{(ﬁoV(O, 0, Z) + (I)(O, 0, Z) — ¢0} P Q3(Z) ,

(- ks=1).  (30b)

3.2.2 Waiting Time Analysis

From the above analyses for the semi-exhaustive service priority model (k1 = oo, ko = k3 =
1 = K), the final result for W) (s),n = 1,2, 3 are given by:

Theorem 3.1.
e TRy Ty i G
Wi (s) = S_A(zl{ff21){*( )}PQE%’;(;, f,/ffél)’ (31b)
Wiy Lopws  P0.0.1- /) 10

s—A3{l—H;(s)} P;,(0,0,1)s

where P (z,y, z), P2(0,y, z), and P5(0,0, z) are given by (24a), (24b) and (24c), respectively. O

(iv) Mean Waiting Time
For the semi-exhaustive service priority model (k1 = oo, k2 = k3 = 1 = K), the mean waiting
time formulas are given by:

Corollary 3.1.
(2) 3 (2) _ (2)
Athy Aih; 1—pow
E(W1)k—1 = - 32a
W)x= 2(1—p1 1—p1 Zz: (1—pi)? 1—p1 2v (320)
EW3)k=1 = + (32b)
Wt =50 =y " T - i) - )
JrC) 1_ )
+ DYV UL T L
201 — p1)(1 = p3) (1*P3) (L=p1)(1=py) 2v
E(W3)gk—1 = + (32¢)
Wadesr =3t = o) [ T T )0 - )0 — o)
L—p 2) 1-p v@
+ (R + 230 + .
21— pf)(1—p) " (1—pf)(1—p) 2v
O

3.3 The Case of (k1 = 00, ky = k3 = 0)

We consider GFs I1,,(z,y, z),n = 1,2,3 for the exhaustive service priority model. Then, the
following functional relations are derived, where @, = Qy(z,y,2), n =1,2,3:

Iy (z,y, 2) = {11 (z,y, 2) — I11(0,y, 2)}Q1/z + {II2(z, 0, z) — I12(0,0, 2) }Q1/x
+ {Hg(l’,y, 0) - H3(0a y,O)}Ql/x + WO{Qv(ZL‘v Y, Z) - Qv(07y> Z)}Ql/l'a (33a)
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where my = 22:1 11,,(0,0,0). We use the minus terms, I1; (0, y, 2), I12(0,0, ), I13(0, y, 0), and

Q4(0,vy, z). (These minus terms guarantee the exhaustive service).

(2, y, z) ={a(z,y, 2) — Ua(z,0,2)}Q2/y + {I11(0, y, 2) — I11(0,0, 2)}Q2/y
+ {l3(0,y,0) — [3(0,0,0)}Q2/y + m{Qu(0,y, 2) — Qu(0,0, 2)}Q2/y, (33b)
U3(2,y,z) ={ls(z,y,2) — Us(z,y,0)}Qs3/2 + {I11(0,0, 2) — I11(0,0,0)}Q3/2
+ {I15(0,0, 2) — 15(0,0,0)}Q3/% + m0{Qu (0,0, 2) — Qu(0,0,0)}Q3/2.  (33c)
I (2, y, 2){z — Q1}/Q1 + 111(0, 9, 2) = {Il2(2,0, 2) — H2(0,0,Z)}
+ {U3(x,y,0) — 3(0,y,0)} + mo{Qu(z, y, 2) — Qu(0,y,2)}, (34a)
(2, y, 2){y — Q2}/Q2 + Ua(z,0,2) = {111 (0, y, 2) — Hl(O»Oa z)}
+ {I13(0,y,0) — I3(0,0,0)} + mo{Qu (0, y, 2) — Qv(0,0, 2)}, (34b)
3(z,y, 2){z — @3}/Q3 + 3(z,y,0) = {I1(0,0, 2) — I1;(0,0,0)}
+{I15(0,0, ) — (0, 0,0)} + m{Qu(0, 0, 2) — Qu(0,0,0)}. (34¢)

The right-hand side of Eq.(34a) is expressed by ¢1 (z, y, z). Similarly, the right-hand sides of (34b)
and (34c) can be expressed by @2 (y, ) and @3(z), respectively. Using the zero, x = 61 (y, z) for [z —
Q1(x,y,2) = 0], we obtain 11, (0, y, 2) = p1{d1(y, 2),y, 2}, Thatis, Il (z,y, 2){z — Q1}/Q1 =
21(5,9,2) — o1 (01, , ). Similarly, sz, 5, 2){y — Q2}/Qs = pa(z, 2) — a(B2(x, ), 2),
3(x,y,2){z — Q3}/Q3 = ¢(z) — ¢3(d3(x,y)). Adding both sides of (34a)~(34c) lead to the
following invariant relation. (Q,(0,0,0) = 0, -. MV rule).

Lemma 3.1.

3

Znn(xv Y, Z){Zn(.%', Y, Z) - Qn(xv Y, Z)}/Qn(x>y7 Z) = WO{Qv(xayv z) - 1}7 (35)

n=1
where Z,(x,y, 2) — Qn(x,y, 2z) corresponds to x — Q1, y — Q2, and z — Q3, respectively. O

Note that n=3 here can be extended to the general N > 3. Accordingly, our remaining analysis
and the formula on W} (s) and E(W,,) k= are presented in Subsection 4.1.

3.4 The Case of (k; = 00, ky = 1,k3 > 1)

For the case of (k; = 00, k2 = 1, ks > 1), the basic functional equation is given by:

(0,1, 2) [1 B G2{G1§Jy72’)a2’}:| L 2(0.,0.2) |:G2(C;1,Z) - G;;((j;; y)k3:|
+k321¢ 0,0,k)z [G?)(le y)* G3(C;7y)’“} 6
== oV (0,y,2) [1 - GQ{(;}Z}] — ¢oV(0,0,2) [Gﬂy;l’ 2 _ GS(C;; y)’”]
+ o ’%ZIU(O,O,k)z’“ {G?’(i;vy)k _ GS(Z;;WT

k=1

k3
+ ¢o {V(Glayvz> - GS(GMJ)} :

zks

Setting G2{G1(y,2), 2}/y = G3(G1,y)* /2% = 1, we obtain the zeros, y = 6(ws) and z =
ws,s = 1,2,--- ks — 1. Using the zeros, we obtain the following simultaneous linear equations.
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Note that V(x,y, ), v(i, j, k) and G,,,n = 1,2, 3 are known functions:

kkz (@) = Ga{G1(3(ws),w4), 8(ws) Y] 6(0,0, )
=
o 3 0,00 [G3{G1(0(ws),04), 8w} = (@3] (37a)
oV (a5 ) 3 00) 1), 3 =12, kg1
S i 60,05 = dufan(3ledon) ~ 1) 5= L2 L GT0)
=
#(0,0,k) := poAk, Ag:= ﬁ, k=1,2,-- ks —1. (38)

Using the above determined </15(O, 0, z), we also obtain </15(0, Yy, z) such as

k3
$(0,y.2) [1 - GQ{G“yW)vZ}] £ 3(0,0,2) [szw - GGy ]
L [GaGLyt GalGryt
+¢0;Akzk[ i 2;3 — z;i ] (39)
k3
= oV 0.2 [1 - EIEZ 0,0, [l92) GG
= k k3 k3
Foo 3 00,002 [ SO0 GO g Ly, - DO

k=1

That is, we have obtained explicit expressions for @(0, y, z) and &)(0, 0, z) with the unknown prob-
ability ¢g. O
Next, we have to go to Step 2 and Step 3 in 3.5, at which we can derive P, (x, y, z), P, (-), 11, (*)
and W} (s),n=1,2,3.
Therefore, from the above analyses, the final result of W (s),n = 1,2, 3 for the case of (k; =
oo, ko = 1, kg > 1) is summarized as follows:

Theorem 3.2.  For the case of (k1 = 00, ko = 1, k3 > 1), the LSTs W (s),n = 1,2, 3 are given
by the top-down procedure, where P (z, vy, z), P»(0,y, z) and P3(0,0, z) are given by (24a), (24b)
and (24c), respectively. O

3.5 The Case of (k; = 00, ks, ks > 1)

As derived in Subsection 3.1, the basic functional equation with unknown functions ®(0, y, 2)
and ©(0, 0, z) is given by:

ko ko—1 oo ko i
(0,y,2) [1 GaiGuly, 2), 7} } +3 37 0(0.4.k [Gﬂ%’z) _ GlGr2) ]
yre 1 k=0 Y Y
Jj=
Go(Gr, 2 Ga(Gry)t] A Ga(GrL)  Gs(Gry)t
cI)(0,0,z)[ 2(y;2z) B 3(211311) }Jr Z ¢(0,07k)zk|: 3(2;3.@) B 3(211 Y) ]
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ko—1 oo ] k.
GG, = Go(Gh,2)!  Go(Gy,2)P
=—¢0V(0,y,z>[ iﬁ L %) ] b0 > 3 0(0,5,k) [ e
7=1 k=0
Go(C ,zk2 Gs(Gy, y)ks
—¢0V(0,0,z)[ z(y;; . 3(2233/) ] @3)
k3—1 k k k
§ : G (G ay) G3(G17y) 3 G3(G1ay) 3
k 3 1
+¢0 r U(0,0,k)z |: Zk - ZkS +¢0V(Glayaz)7¢0 Zk3

For ks, k3 > 1, the above functional equation is rearranged as follows: Setting y = d,.(z), we have

k‘Q*]. o0 '
>3 o0k 1= 2O
y=6r(2)

J
j=1 k=0 Y

+@(0,0,2) [—W] + kszl $(0,0,k)2* [G?’(Ghy)k‘* _ GS(Glay)k]
y=6r(2) y

zks zks 2k

=51(2)

ko—1 oo k
Go(Gy, G3(Gy,y)™
=po > > v(0,4,k [2(}) - 1] —$oV(0,0,2) [1 - 3(,1‘”)]
j=1 k=0 Y y=0r(2) o y=0r(2)
kgfl k k
G3(Gry)"  G3(Gr,y)™
k| G3lG1,Y 3 Y
+o Yy v(0,0,k)z [ -
k=1 y=5r(2)
G3(Gi(y, 2),y)ks
+ ¢o [V(G1>y>z> _ Gl 1(y;€3 »Y) ] :
o y=0,(2)
In succession to ko, we consider the zeros z = w; for k3, ie. z =ws, s=1,2,--- , k3 — 1 and

wg, = 1 such as

ks
Y y=0r(2)
Setting z = wg, we have
o Ga(G1(y, ws), ws)’
> > 00,5 k)( >><s>k[1 }
j=1 k=0 Yy y=0r(ws)
ks—1 k
G (G (yawS)ay)
k 3G
+ Z gb(oaoa k)(wS) |:]‘ - Wk B
k=1 s y*é‘r(ws)
ko—1 oo .
] G G y VS )y s J
=60 > > 0(0, 5, k) (8- (ws)) (ws)* [ 2C1(phve), o) —1] (41a)
j=1 k=0 Yy y=6r(ws)
ks—1 k
G3(G1(y,ws),
00 3 0(0,0,k)(ws)* [ e et
k=1 Ws y=0r(ws)

+ ¢0 [V(Gl (yaws)7 2/7003) - 1]y:5T(wS) .
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For ko :=" k € {0,1,2--- < oo}, we obtain

ko—1 4
; j Ga(G1(y,ws),ws)?
7 60,5 k) (0 () () [1 - Gl v }
= v y=5:(w2)
ks —1 .
Gs3(G s),
3 6(0,0,k)(w,)* {1_ (G0 2).v) ]
w g—
k=1 $ y*&"(ws)
ko—1 4
: j Ga(G1(y,ws),ws)?
—60 3 0(0, , ko) (51 ()} () [ 2(Galywa)n)! 1] )
= Y y=5: ()
k3 —1 .
G G Y S/
+ ¢o Z (0,0, k) (ws)* [ 3( 1(2!]:0 ) y)" 1]
k=l s y=6r(ws)
+ 00 [V(G1(y,ws) g, ws) =1y, w,) -
Here, we introduce,
j J
g, 7, 8}y 1= (8 (ws)) (ws)™ [1 - GQ(Gl(y’jWS)’Ws) ] and
Y y=5,(ws)
k
afk,r, s} = (ws)" [1 - GB(G1(y,ka),y) } .
“s y=6,(ws)

Then, we obtain the following simultaneous linear equation for {¢(0, j, ko) } and {#(0, 0, k) }, which
are guaranteed the existence and the uniqueness by p < 1. (7, k are independent variables):

ko—1 ks—1
Z ¢(07 Js k‘())Oé{j, T S}ko + Z ¢(07 0, k’)OL(k, T, 8)
7=1 k=1
ko—1 ks—1
:¢0 Z U(()?.j? kO)QO{jv r, s}ko + ¢0 Z U(07 07 k)QO(ka T, 3) (42)
j=1 k=1
+ ¢0 [V(Gl(y’ws)a Y, WS) - 1]y:57.(w5) ;
P12 ky—1,  s=1,2-- ks—1.

This linear equation has the square matrix (ko —1+k3—1) x (kg —1+k3 —1). Note that coefficients
adj, 7y Sty a(k, 7, s) and v(0, j, ko) - ao{j, 7, S}y, (0,0, k) - ag(k, 7, s) are the known functions,
which are uniquely arranged in the matrix, where 1 < j5,r < kg —land 1 < k,s < k3 — 1,
ko ="k €{0,1,2,--- < 0o}, (¢ is still unknown).

. D;
¢(O,j, kjg) = ¢0Aj, A]’ = |DJ|, = 1, 2, e ,kz — 1, (433)
#(0,0,k) := ¢oAF,  AF .= M, k=1,2,--- ks — 1. (43b)
|D|
Using y = 6, (z), we obtain ®(0, 0, z) given by
~ ks k21 . J
3(0,0, 2) [1 — G3(G;;y)] + ¢o Z A (6,(2)) (ws)Fo [1 _ GQ(Gjl’Z)]
o y=0(2) =1 Yy y=6,(2)

ks—1 k- k
Ga(Gry)  Ga(Gh.

+¢OZAk[3(1y) 3 3(11/)]

k=1 Yy

k k
ZR3 z :67’(2)
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ko—1

. ; Ga(Gy, 2)?
=0 Y (0,5, ko)(8:(2)) 2" [2(32) - 1] (44)
j=1 Yy y=0(2)
k3
~ 60V (0,0,%) {1 - &G }
2 y=6:(2)
kgfl k k
G3(Gy, G3(Gy,y)ks
+ ¢o Z v(0,0, k)z" [ 3 ; y" _ Gl ;3y) ]
k=1 o o y=6r()
G3(Gi(y, 2),y)k
+ o [V(Ghy,z) _ Gl 1(y’€32) y) ] .
= y=0(2)
ko—1 .
= Go{G1(y, 2) Z}k] ! [ Gz(GlaZ)”]
3(0,y,2) |1 — T Aj( 0| Z2RTLER
0.9 | 2 “y ) 2
ks—1 k
~ Ga(Gr,2)"  G3(G1,y) K [Ga(GLy)*  Gi(Gh,y)
+<I>(0,0,z)[ s o + ¢o ZA = - e
Go{Gy, 2}k ] Go(Gr,2)!  Ga(Gy,z)k

— — ¢V (0,y,2)) [1_ Z{yhz} ]+¢ Z O],koyzko[ 2(y;,Z) _ z(y;;fz) ]

GQ(Gl,Z) 2 o GS(Gla ) :| (45)

- d)OV(OaOaZ) |: ka

zk3

ks—1 k k k
GGJJ GGvyS G‘G,y3
+ 0 v(0,0,k)zk[ 3(Z,1 S 3(2;3) ]+¢>o {V(Gl,y,z)—‘i(z;)}‘
k=1

In the above equation, ®(0,0, z) denoted by EI;(O, 0, z) has been explicitly determined as in (44).
Denoting the above determined (0,0, z) by ®(0, 0, z), we also obtain ®(0,y, z) as in (45). (That
is, Step 1 has been completed).

Step 2:

(1)1(0) Y, Z) :QZ)O{V(Gl (y7 Z)’ Y, Z) - V(Oa Y, Z)}
+ (I)Q{Gl(y) Z)’ O) Z} - @2(0, 07 Z) =+ (1)3{G1 (ya Z)7 Y, 0} - (1)3(07 Y, 0)7 (223)

where ®o(z,y, z) and ®3(z,y, 2) are given by Egs. (22b), (22¢), respectively.
Step 3: Using ®y(z,y, 2), 3(x,y, z) and </15((),y7 z), we can express P, (z,y,z),n = 1,2,3, by
which we can obtain P, (-),II,,(-) and Wi (s),n = 1,2, 3.

Therefore, from the above analyses, the final result for the case of (k1 = 00, ks, k3 > 1) is

summarized as follows:

Theorem 3.3. For the case of (k1 = o0, ko, kg > 1), the LSTs W)(s),n = 1,2,3 are given by
the top-down procedure, where ®(0,0, z) and ®(0,y, z) are given by (44) and (45), respectively.
Pi(z,y,2), P2(0,y, z) and P3(0, 0, z) are given by (24a), (24b) and (24c), respectively. O
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4 Complements (Generalization)

We introduce the following notation forn = 1,2,--- , N:
N n
o o= An/A, A=A, A=),
n=1 i=1
N n
P = Anhin, pi= pu =Y pis (47a)
n=1 i=1
N N
h = Zrnhn, h?) = Zrnhf)
n=1 n=1
and
Qn(z):= H{\,(1—2)}, n=1,2,--- N,
1 . * p’r—r 1 . 2
H(s) = 15 STNH(s), b= = W = F S, (47b)
©,(s) = Ho{s + An(1 — ©5(5))},
(2)
h h
E©,)=—""— F©?)= "
(©n) — (©3) (ETSE
On 1(s) = Hy ({s+ A 1(1-0;_(s)}, (47c)
N
Qu(0,0,-++,0) =0, m := > T0,(0,0,--- ,0).
n=1
Additionally, we introduce GFs I1,,(z1, 22, -+ , 2n),n = 1,2, -+ - , N for queue-length distributions

defined at message departure epochs, which is an extension of II,,(x, y, z) in Section 3.

4.1 Exhaustive Service Model

In Katayama and Kobayashi [12] and Katayama [13], the time-limited service priority model
with the maximum-attendance-time (77,75, --,Tx) was analyzed in 2007, i.e. the exhaustive
service priority model with (k1 = ko = -- = ky = 00) is equivalent to (77 = Ty = -- = Ty = 00).
The outline of contents is summarized in this section.

4.1.1 Basic Invariant Relation

We know from the derivation of Eqs. (34a)~(34c) in Section 3 that the right-hand side of (48a)

depends on only z,, 241 - - - , 2n. That is, the key function ¢, is defined as follows:
(21, 22, -+ 2n ) {20 — Qn}/Qn + (21, 22, -+, 20-1,0, Zng 1, Zny2, -+, 2N)
=: n(Zn, Znt1, ", ZN)- (48a)
The zero, z, = 6, of (2, — @, = 0) can be expressed as 8, (21, 22, - - - , Zn_1, Zni1, - ,2N). For
brevity, we use 6, = 0y (21,22, -, Zn—1, Zn+1, - - , 2N ). Using the relation,
Hn(21, 22y 7ZTL—1701 Zn+1s2n+2, " 7ZN) = 9071(5”? 2+l aZN)a
we have,

Hn(zh 29y 7ZN){Z7L - Qn}/Qn

== (Pn(znazn-l—ly e 7ZN) - (Pn(gnvzn—i—la e 7ZN)' (48b)

Adding both sides of (48b) overn = 1,2,--- | N, we obtain finally the following invariant relation:
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Lemma 4.1.

N
> (21,22, 28) %0 — @n} _ To{Qu(21, 22, -, 2n) — 1} (48¢)

n=1 Qn(Zl,ZQ,"' 7ZN)

O

Here, “invariant relation” means that the both-sides of Eq. (48c) don’t contain any term con-
cernig with the controllable parameters k,, and T,,,n = 1,2,--- | N. (For 0 < T,, < o0, it is not
appeared at the both-sides in Katayama [13]).

Eq. (48a) can be rewritten as

H:(ZhZQ,"' 7ZN)
:{Hn(Zl,ZQ," : 7ZN) _Hn(217227"' 7Zn—1a072n+lazn+27"' 7ZN)} (48d)

+ Son(zrw Zn41," " 7ZN>7

where I} (21, 22, -+ ,2n) = I,(21,22, -+, 2N)2n/@n, which represents the GF of the num-
ber of messages in class-1, class-2,- - -, class-IV at a <service-beginning> epoch of service time
H,,n = 1,2,--- ,N. The two terms on the right-hand side represent the GF of the number
of messages at service beginning epoch of the service time H,,,n = 1,2,--- | N. In succession,
a single server remains at S,, for the exhaustive service for class-n messages. The third term
©n(2n, Znt1,- -+ , 2N ) represents the GF of the number of messages of class-n, class-(n + 1), - - -,
class-N at service beginning epoch, where the moving single server moves from the other classes.
The movement of the single server is described as, S, < Sn+1, Sn+2,- -+, Sn. Indeed, there is
no message of class-1, class-2, -- -, class-(n — 1) in the queueing system as shown by the GF of
©n(Zny Zn+1, -+, 2N ). Similarly, the first part is described as S,, — S,,.
We sum for the both-sides of (48d):

N N
ZH:;(Z]JZ27". 7ZN) - Z{Hn(zl’z%"' 7ZN) _Hn(Z]_,ZQ,"' 7ZTL—1)O)ZTL+1)"' 7ZN)}
n=1 n=1

N
+ ) onlzns zng1, - 5 2N) (48¢)

n=1

N
:_ZHH(())O ﬂ0)+7T0{Q’U(Zl>Z27"' 7ZN) —QU(O,O,"' 70)}
n=1

=—mo + Qv (21,22, ,2ZN) (Qv(0,0,---,0) =0 --MV rule)
=mo{Quv(21,22, -+ ,2n) — 1}.

N
ZHZ(Zl,ZQ,“- ,ZN):Wo{Qv(Zl,ZQ,"- ,ZN)—l}, (48f)
n=1

which leads to Lemma 4.1.
Further, using (48b), Eq. (48f) can be rearranged as follows:

N N
Z{Hn(217227"’ aZN)_Hn(Zl)ZQ)"' 7Zn—17072n+17"' 7ZN)}_ZHH(0707 70)
n=1 n=1
N
+70Qu(21, 22, 2v) = O T (21,22, 2w). (48g)
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This is a balance equation, for which a probabilistic meaning is given as follows. The first two
terms in [~ ] on the left-hand side of (48g) represents the GF of the number of messages at a service-
beginning epoch after service time H,, and in succession, a single server continues serving of class-n
messages because of the exhaustive service discipline, which is represented by

_Hn(217227 e azn*17072n+17 e ;ZN)~

The fouth term 7yQ, (21,22, - ,2zn) represents the GF of the number of messages at service-
beginning epochs after a vacation time V' during the last vacation period (MV). On the other hand,
the GF of the right-hand side, Zflvzl I} (21, 22, - , 2N represents the GF of the number of mes-
sages for all classes at service-beginning epochs in the queueing system, which consists of the former

exclusive three terms on the left-hand side. Here, — 25:1 I1,(0,0,--- ,0) is the remainder term,
by which it is guaranteed that the GF of the number of messages in [~] represents the GF of the
number of messages at <service-beginning> epochs of the service time H,,n = 1,2,--- , N. That
is, it is guaranteed by the term (—mp) that there is at least one message in the queueing system.
Next, in order to derive functional equations for ¢, (zn, 2nt1, -+ ,2n8), n = 1,2,-+- /N, we
introduce a set of {z} ;;j = 1,2,--- ,k — 1} satisfying the following simultaneous equations,
Tk, = Qj{xk,hmk,Q;’ Tk k—15Rky Rk+1y " 72N} fOI'j = 1727” : 7k - ]-7k = 2737'” 7N‘
The element xy, ; is thus a function of z, 211, -+ , 2y denoted by
Thj = T j(2k, 2kt 1, 5 ZN)-

Further, we also introduce two functions defined by

k—1

Th(Zhs 2hats 02 2N) = D Nk (2ks Zhgds o 5 2N),s
=1

x(2) = xp(z,1,-- -, 1).

Then, we obtain the following lemma on x(z), k > 2. Egs. (49) and (49a) have one and only one
zero x,(2) in the unit circle [z (2) /A | < 1:

Lemma 4.2.
k—1
vi(2) = > NHIN = Mz —ax(2)} =0, k=2,3,--- N, (49)
j=1
w2 _ 1N~ L Ao @) 49
/\T_)\szj e : (492)
k—1 k=1 j=1 k—1

Further, inserting 2 (1 — s/Ag) /A, = ©;_,(s) to both sides of (49a), it follows that
Op1(s) = Iy {s + M, (1= 6, ()} (49b)

Note that ©} ,(s) is the LST of the DF of the busy period in the standard M/G/1 queue with
A=\, and H*(s) :== H;" |(s). That is, we have

hiy ) hy
E(©;_,) = = E(©;2)) = FEvrant (49¢)
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4.1.2 Functional Equation for ¢, (2, zn4+1, - , 2N)

Using B = Bi(z) := A — 2x(2) and the set {xy, j, k > 2}, we obtain from Lemma 4.1 that

(-Pn(zna Zn41y" " ,ZN) - (-Pn{ﬂny Zn41," 0 aZN}
N
+ > {eiz 11, 2n) — 03Bz, 2N)} (50a)
j=n+1
- WO{Qv(xn,bxn,Qa Ly Tnn—1,2%n, fnt1, """ 7ZN) - 1}
(Note that 3, instead of &, does not contain the variables z1, 2, - - - , 2k_1).
Setting z,, = z, 2,41 = -+ = 2y = 1, we obtain the following functional equation of G,,(2):
GTL(Z) = (pn('z?l?l?"' 71)7 (51)
where
Gr(2)=Gie{fu(2)} = gk(2), k=n,n+1,--- N, (51a)
k—1
fu(z) =N —a2), o BER) = DN - any), (51b)
j=1
N
ge(2) = > {G(B](2)) = Gi(1)} + mo{V*(aw(2)) — 1}, (5lc)
Jj=k+1
ak(2) =N | —xp(2) + A(1 — 2), (see Lemma 4.2), (51d)
k—1 N
M(2) == Al = zn) + ) AL —any) + M1 —2)+ > A1 —2) (51e)
Jj=1 j=k+1
k—1 N
:Z/\j(l —Zpj) + (1 —2) + Z (1= z5).
j=1 j=k+1
(3#n)
Hn(1717"' y Zn :Za]-a”' 71)
11, =
(Z) Hn(:l?la”' 71)
Qn(2)/Tn
=———{G,(z) — G,(1)}. (52)
o i Gn() ~ Gu)

Remark 4.1. From the result of IT,,(2) = Y7, pn(i)Qn(2; %) and Eq. (52), we obtain that G,,(z) —
Gn(1) = P,(2) — P,(1), which corresponds to ¢, (z,1,--- ,1) = Gp(2) = Pp(2),n = 1,2,3.
Two GFs G, (2) and P, (z) represent GFs defined at <service-beginning epochs>.

4.1.3 Waiting Time Analysis

Forky = ko = --- = ky = K = oo, Theorem 4.1 provides the LST of waiting time distribution
for class n, whereas the mean waiting time is given in Corollary 4.1.
Theorem 4.1.
1-— Gn(l1—5s/A,) — Gp(1
s—M{1—Hx(s)} —s/\n
O
Corollary 4.1.
Ao A2 a9
E(WTL)K*OO: n T = () n:1,2,---,N. (533)

B 2(1 - pn) * 2Tn>\n(1 - pn)7
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In particular, forn = N,

E(WN)K=cc = )\Nhgg) Gﬁ)(l) ;
2(L=pn)  2AN(1—pn)
¢ ) AN (1= o)) + Ve (ph )R 53
(1=p)(1=p+20x5_,pN)
22N (1= p)(1 —pn)* 0@
(1—p)(1—p+2p8_spon) 20
A set of recursive equations to calculate G;f) (1),k=mn,n+1,---, N in (53a) is given by

(1= p) (= pf + 20001 )G (1) = mNAE L (1 — pi)?ht )

@) N[ M@
+ AR (of ) )+ M= pe)® Y { gt 0 (1)} (53¢)
=kt 1 (1—pj) (1= pj)

e

+ 2k (1 = p) (1 = pr)" -

Remark 4.2. From the functional equation analysis with Egs. (51a)~ (51c), we obtain

N
Gn(2) = Gu{fu(2)} = mo{V*(an(2)) = 1} + Y {G3(5}(2) = G;(V)}, (54)

j=n+1

which enables us to derive the recursive formula (53c) of the moments of waiting time. (The descent-
order starting from k& = N is necessary for getting of G%Q) (1) in (53¢) and G, (2) in (54)).

Remark 4.3. The functional relations on ®,,(z,y, z) for N = 3 are given by:

®1(0,y,2) =po{V(G1(y, 2),y,2) — V(0,y,2)}

+ ®3(G1(y, 2),0,2) — 92(0,0, 2) + ®3(G1(y, 2),,0) — ®3(0,,0),  (55a)
Dy (x,0,2) =po{V(0,G2(x,2),2z) — V(0,0,2)} + ®1(0, Ga(x, 2), z) — ®1(0,0, 2)

+ ®3(0, Ga(z, 2),0) — ®3(0,0,0), (55b)
®3(z,y,0) =¢o{V (0,0, G3(z,y)) — V(0,0,0)}

+ 52 {9,(0,0,G3(z,y)) — 8,(0,0,0)}. (55¢)

Further, by use of only above functional relations (i.e. no use of II,,(x,y, z)), such iterative func-
tional equation may be derived, as corresponding to Eq.(16d) for the case of (k; = ko = 00), or
not. It is unnatural in the top-down procedure to introduce such inconsistent IL,,(x, y, z) at the first
in Section 3. It follows from using Lemma 4.1and the set {x}, ;} introduced before Lemma 4.2
that both iterative functional equations (51a) and (54) have been derived, which are considered as
modified functional equations of (16d).

4.2 Semi-Exhaustive Service Model
4.2.1 Delay Cycle Analysis

For the case of (k; = ky = --- = ky = 1), the delay cycle method is effective. Applying
the delay cycle analysis and introducing a super-message composed of messages served in a busy
period, we derive explicitly the LST and the first moment of the message waiting time distribution
for each class in the M/G/1 priority queues with multiple vacation. Note that a super-message of



-82- 33 2023

class n enters service only when there is no message of class 7,2 = 1,2,--- ,n — 1 in the queueing
system. The system is either in a delay cycle, called a V'-cycle, initiated by a vacation time V' with
probability Py, or in a delay cycle, called a B;-cycle, initiated by a service time of a super-message
of class i, B; = ©; with probability P;,i = n + 1,n + 2,--- , N. Note that for the derivation of
W (s), the server utilization for V-cycle and B;-cycle are assigned to 1 — p and p;, respectively,
that is, P;/Py = p;/(1 — p). While the possible server-utilization is 1 — p;" (= Py + P;). Then,
we have the following results.

Theorem 4.2.
1 AR
Wr(s) = iW;(sW—cycle) + Z pi + Wi, (s | Bi-cycle), (56a)
P i=n+1 1- P

1 —V*(on-1(s)) 1 —0;(on-1(s)) U*(s)
sv/(1—phy) sE(©:)/(1—pf_) "7
U () = Wa(s)am/pn X Wa(8)nymys (56b)

s(1 -\, E(D, . s(l1 - N\, E(H,
Wo(8)am/pj1 = . E pw— )\n(D;‘;()i)’ Wo(8)a/m = . E pw— )\n(H,’;()(z)’
Dy (s) == BN {1 =07 1(s)}] = ©5(0n-1(s) — 8) # O}, (0n-1(5)), (56¢)
On-1(8) :==s+ A:Lr )\ @n 1(s).

Wy (s|V-cycle) := Ur(s), W;}(s|Bj-cycle) =

Here, the service time D,, is also called the interception time generated by messages of class-1,
class-2, - - -, class-(n-1). The LST D} () in (56c) means the increment of the waiting time of class-n
messages caused by the interception of higher priority messages. In the case of D,, = 0, only the
second factor in (56b), Wy (s) 1/#/1, contributes to the LST of the DF for the waiting time of class-
n messages that arrive during V'-cycle and B;-cycle. It should be noted that O (o,,—1(s) — s) #
© (on—1(s)) in (56¢). That is, the LST D} (s) of the DF of <the service time D,,> does not
correspond to O (0,—1(s)) # D (s), but to H(s), i.e. the same category with the LST of the DF
of <the service time H,,> for class-n messages, see details of Katayama [10]. O

For N = 2,n = 2 and ky = 1 (the semi-exhaustive service), it follows from Eqgs. (8c) and (11)
in Section 2 that

_ CaoQ2(y)

() y — Q2(y)

(1—y {®(y) -1+ V(0,9)}, (57)

where

B(y) = 1— V(0,y) + A (C10).y) = 1}

)
y — Ga(G1(y))
_ CedoQa(y) . VI(Gi(y),y) — "
Maty) = S O~V G 7
Therefore, setting y = 1 — s/, we have
W5 (s) =1a(1 — s/X2)/H5(s), (see W5 (s) in Theorem 2.2). (58)

It should be pointed out that W (s|V -cycle) in Theorem 4.2 has been analogically derived by using
the result of minimum N = 2, i.e. W3 (s) in (58), (see Katayama [9, 10] on W5 (s)).

Corollary 4.2. For k; = ko = --- = ky = 1 = K, the mean waiting time for class-n is given by:

E(W, E(W, 1—p v® 1.2 N 59
( n)K:1_ ( n>0+(1_p:_1)(1_p7_1|_)%a n=1.14--,1V, ( )
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where
Anh? (on)’
RS | A (e T ) o

(2)
+ E Aih;™ + E
2(1_'0” 1_pn [zl 1=n+1 1_pz ]
O

Remark 4.4. The structure of T-cycle

For the analysis for W (s), T-cycle is defined as the delay cycle initiated with an initial delay
T and generated by messages of class 1, 2, - - - ,n, where 77 (s) is the LST of the DF for the initial
delay T'. A period 6 of T'-cycle is given by

0*(s) :=T*{on-1(s)},
O'n_l(S) I:S‘l‘)\j{ _)\+ @n 1( )

where 9271(5) is the LST of the DF for the length anl of a busy period generated by messages
of class 1,2,--- ,n — 1, which is a solution to the equation

Or 1(s)=H ({s+ XN =X\ ,16/_,(s)}. (60)

If we denote by W (s|T-cycle), the LST of the DF for the waiting time of a message of class n that
arrives during a T'-cycle generated by an initial delay 7" is expressed by a product form:

L 07(8) g () _ L= T {on(s))
sE() " sE(T)/(1 = py_y)
where @7 (s) is given by the following form using the Pollaczek-Khintchine formula,
s(1 =M E(C))
s — A + A Ci(s)’
where C7(s) is the LST for the completion time C,, defined by C}:(s) := H}{on—1(s)}.

W (s|T-cycle) = o (s), (61)

D7 (s) = (62)

5 Concluding Remarks

This monograph is one of challenging to “Three Dimension Problems”. For the case of (k1 =
00, ko, ks > 1), the LSTs W} (s),n = 1, 2, 3 have been obtained by using the top-down procedure as
O, (x,y,2) = Po(z,y,2) — I, (-) = W)(s). It may be possible to extend the dimension-number
to (N = 4) of the priority model with (k1, ko, k3, k4 > 1), however, numerical examples for NV > 3
should be presented as in Ozawa [11] in the future. In the analysis of the exhaustive service priority
model with (k1 = ko = k3 = 00), a new problem is proposed in Remark 4.3, for which the solution
has been given in Appendix II. Finally, the classical method used in Katayama and Kobayashi [12]
and Katayama [9, 10, 13] has been applied to the multi-dimension problem (N > 3).

On the other hand, for the shortest queue problem and the dual priority model for the longest
queue-length studied by Cohen [6], it seems to be almost impossible to extend to (N = 3). The
barrier between N=2 and N=3 is very high. We have not yet any mathematical tool of analyzing for
these queueing models, such as the boundary value method.
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Appendix I
For the GFs of joint queue-length distributions (not the marginal queue-length distribution), this
gives the derivation of I, (21, 22, - - , zn5), which is similar to one of II,,(2) in Eq. (52).
(21,22, ,2N) = Qn(21, 22, -, 2N) /{zn — Qn(21, 22, , 2n) }
X {(Pn(zny Zn4ly 7ZN) - (Pn(fn(zn; 241yt 73N)7 Zn+1y~An+2 " " 7ZN)}- (Al)
The result is given as the solution of the following functional equation,
k(2 2k15 5 2N) = PRl fi(2h 2415+ 0 2N)s 24150 2N = G2k 241, 5 2N),s
(A2)
where k =n,n+1,---, N and fi, g are known funetions, see Remark 4.3 in Katayama [13].
First, let us introduce a sequence {zl(;), 31(9217 e z](\z,)} defined by
1 ; i+1 j i+1 Ny -
z+ ) = fy ( 2 ’Zk+1v”' 72%)),21531_;) 52215217"‘ 721(\’7 ) ;:Z](G)L i=0,1,2,--
Then, by using this relation repeatedly, we have
Ok (2ks 241, 5 2N) — Ok, Zhg1, - 5 2N) = G2k, 2141, -, 2N), (0 = g})lozl(g))’
where Gp{zk, 2g11," - ,zN|z,g,0) = z, z,(vojl = Zki1, ,z](\(,)) = zn}. Therefore, it follows that
Spk’(zk’a k41, 7ZN> = Gk(zka Rk+1y " 7ZN) - Gk’(ov Zk4+1y " 7ZN)7 (A3)
where the boundary condition ¢ (0, zx+1,- -+ , zn) = 0 has been used and
Felzi 2hets oy 2an) == Ny = 2(zp, wegns o 2n) + A1 = 2), (Ad)
where two terms x(z) and A\ (1 — 2;) in Eq. (49a) can be replaced by zx(zk, zk+1, -+ , 2n) and
Zj\f: i Aj(1— z;), respectively, which provide the explicit expression for zj (zy, 2k41,- -+ , 2Nn), (see
Lemma 1 in [13]). That is, f3 is the known function.
), _(0 0
Gk(zkazk-‘rlv'” s R ng Zk» 7Zk+1)"' 725\7})|Z]E;):Zk7"' aZEV):ZN)v (AS)
gk’(zkv y Rk+1y aZN) = 7TO{‘/ (fk(zk’a ) ZN)) - 1}
N
+ Y {ei(z ) —i(f5 21, 2w) ) (A6)
j=k+1
Therefore, Lemma 4.1 leads to (A1), by using the known Gy 11, G2, -+ , Gy and starting from

k = N. The descent-order procedure is necessary for the derivation of G,, and ¢,,.

Appendix 11

This is an answer for Remark 4.3. From the exhaustive service at S,,,n = 1,2, 3, we have

@1(0,3/, Z) = Pl(Gl(y7 Z)vyvz)v
Dy (x,0,2) = Po(0,Ga(z, 2), 2),

(I>3(‘T’ Y, O) = P3(0a 07 Gg(fE, y))
From (24a)~(24c¢) and Z D, (x,y,2) = 1(0,y, 2) + P2(z,0, 2) + P3(z,y,0), it follows that

3
ZP Zcbnmy, = do{V(x,y,2) — 1}. (BI)
=1

This corresponds to the invariant relatlon in Lemma 3.1 (Lemma 4.1) using P, (-) and ®,(x,y, 2).
g {Pl(x’yv Z) - Pl(Gla Y, Z)} + {PQ(Ovyv Z) - PQ(Oa G27 Z)} + {P3(07 07 Z) - P3(0’07 G3)}
= ¢o{V(z,y,2) — 1}. (B2)
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Setting * = G1(y, z) and y = Ga(z, z) in both-sides of (B2), we obtain
P3(07 Oa Z) - P3(07 07 G3(G17 GQ)) :(ZSO{V(GI (y7 2)7 GQ(‘Ta Z)a Z) - 1}7
" p3(2) — p3(f3(2)) =¢ogs(2), (B3)

@3(2) ::P?,(O7 O, Z),
f3(2) :=G3[G1{G2(d3(2), 2), 2}, G2(d3(2), )],
93(2) :=V[G1{G2(d3(2), 2), 2}, G2(03(2), 2), 2] — 1,
and 03(z) =: z is the zero of x = G1(y, 2) = G1(G2(x, 2), z). Since (B3) is the same type with
(16d), we have the solution ¢3(z) = @ops(z).
In succession, setting z = G1(y, z) and using ¢3(z), it follows from (B2) that

Py(0,y,2) — P2(0,G2(G1, 2), 2) =po{p3(G3(G1,y)) — p3(2) + V(G1,y,2) — 1}.
P2y, 2) — p2(f2(y, 2), 2) =¢0g2(y, 2), (B4)

where 802<y7 Z) = P2(07 Y, Z)a

f2(y, 2) == G2(G1(y, 2), 2), 92(y, 2) := $3(G3(G1,y)) — p3(2) + V(Gr,y,2) — 1.
Let us introduce a sequence {y;, z; } defined by

Wit = fa(yir zi), zi1 = 2i},i=0,1,2,- - - .
Then, it follows from (B4) that
2(Yi, 2i) — P2(Yir1, zit1) = Goga (Vi 2i)-

By using this relation repeatedly, we have

where

o
P2y, 2) — pa(n,2) =0 > _ g2(uis zilyo = y, 20 = 2),
i=0
902(y7 Z) :¢0{F2(y72) - FQ(OVZ)}7 (BS)
where I'a(y, 2) 1= Y20 92(¥i, 2ilyo = ¥, 20 = z) and ¢2(0, z) = 0 has been used.
Similarly, we have

e1(z,y,2) — e1(f1(y, 2),y, 2) = dogi(z, 9, 2), (B6)
where
e1(z,y, z) :=Pi(z,y, 2),
fily, z) ==G1(y, 2),
91(z,y, 2) ==¢3(G3) — ¢3(2) + P2(Ga, 2) — P2(y, 2) + V(z,y,2) — 1.
Using a sequence {z;+1 = f1(yi, i), Yi+1 = Yi, 2i+1 = 2i},4 = 0,1,2,- -+ it follows that
p1(z,y,2) = ¢o{l1(z,y,2) —T1(0,y,2)}, (B7)

where F1($7 Y, Z) = Z;.i() gl(xia Yi, Zi|$0 =T, Y0 = Y,20 = Z) (901 (07 Y, Z) = 0 has been used).

Note that the functional equations (B4) and (B6) are the same type with (A2) in Appendix I.
Finally, the descent-order procedure is also necessary for the derivation of ¢, (-) and P,(:),n =
1,2,3.
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